Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
mBio ; 15(3): e0306723, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38376149

RESUMO

Type III secretion systems (T3SSs) are essential for motility and virulence in many bacterial pathogens. Proteins destined for the flagellar T3SS contain at least two export signals in their N-terminal D0 domain. Here, we describe a third carboxy (C)-terminal signal in early flagellar subunits that facilitates subunit targeting to the export machinery. Mutational analysis identified critical residues within the flagellar hook subunit C-terminal export signal. The flagellar ATPase and cytoplasmic ring components were not required for this targeting, indicating that core export machinery components facilitate substrate targeting via the C-terminal export signal. More broadly, these results demonstrate that multiple distinct export signals within type III secretion substrates facilitate distinct export events at the T3SS export machinery. Our data establish key events in the export mechanism of type III secretion systems: targeting of subunits to and their sequential interactions with key components of the export machinery. IMPORTANCE: Many bacterial pathogens utilize T3SS to inject virulence proteins (effectors) into host cells or to assemble flagella on the bacterial cell surface. Bacterial flagella present a paradigm for how cells build and operate complex cell-surface "nanomachines." Efficient subunit targeting from the bacterial cytosol to type III secretion systems is essential for rapid assembly and secretion by T3SSs. Subunits are thought to dock at the export machinery before being unfolded and translocated into the export channel. However, little is known about how subunits dock at the export machinery and the events that occur post docking. Here, we identified a new export signal within the C-termini of subunits that is essential for targeting of subunits to the type III export machinery. We show that this new export signal and previously identified export signals are recognized separately and sequentially, revealing a pathway for subunit transit through the type III export machinery in which sequential recognition events carry out different roles at major steps in the export pathway.


Assuntos
Proteínas de Bactérias , Sistemas de Secreção Tipo III , Proteínas de Bactérias/metabolismo , Sistemas de Secreção Tipo III/metabolismo , Bactérias/metabolismo , Flagelos/metabolismo , Membrana Celular/metabolismo , Transporte Proteico
2.
Elife ; 112022 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-35238774

RESUMO

Type III Secretion Systems (T3SS) deliver subunits from the bacterial cytosol to nascent cell surface flagella. Early flagellar subunits that form the rod and hook substructures are unchaperoned and contain their own export signals. A gate recognition motif (GRM) docks them at the FlhBc component of the FlhAB-FliPQR export gate, but the gate must then be opened and subunits must be unfolded to pass through the flagellar channel. This induced us to seek further signals on the subunits. Here, we identify a second signal at the extreme N-terminus of flagellar rod and hook subunits and determine that key to the signal is its hydrophobicity. We show that the two export signal elements are recognised separately and sequentially, as the N-terminal signal is recognised by the flagellar export machinery only after subunits have docked at FlhBC via the GRM. The position of the N-terminal hydrophobic signal in the subunit sequence relative to the GRM appeared to be important, as a FlgD deletion variant (FlgDshort), in which the distance between the N-terminal signal and the GRM was shortened, 'stalled' at the export machinery and was not exported. The attenuation of motility caused by FlgDshort was suppressed by mutations that destabilised the closed conformation of the FlhAB-FliPQR export gate, suggesting that the hydrophobic N-terminal signal might trigger opening of the flagellar export gate.


Assuntos
Proteínas de Bactérias , Flagelos , Bactérias/metabolismo , Proteínas de Bactérias/metabolismo , Flagelos/metabolismo , Transporte Proteico , Sistemas de Secreção Tipo III/metabolismo
3.
FEBS J ; 289(9): 2628-2641, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-34812581

RESUMO

Type III Secretion Systems (T3SS) transport proteins from the bacterial cytosol for assembly into cell surface nanomachines or direct delivery into target eukaryotic cells. At the core of the flagellar T3SS, the FlhAB-FliPQR export gate regulates protein entry into the export channel whilst maintaining the integrity of the cell membrane. Here, we identify critical residues in the export gate FliR plug that stabilise the closed conformation, preserving the membrane permeability barrier, and we show that the gate opens and closes in response to export substrate availability. Our data indicate that FlhAB-FliPQR gate opening, which is triggered by substrate export signals, is energised by FlhA in a proton motive force-dependent manner. We present evidence that the export substrate and the FliJ stalk of the flagellar ATPase provide mechanistically distinct, non-redundant gate-activating signals that are critical for efficient export.


Assuntos
Adenosina Trifosfatases , Sistemas de Secreção Tipo III , Adenosina Trifosfatases/metabolismo , Bactérias/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Flagelos/genética , Flagelos/metabolismo , Transporte Proteico/fisiologia , Sistemas de Secreção Tipo III/genética , Sistemas de Secreção Tipo III/metabolismo
4.
Mol Microbiol ; 116(2): 538-549, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33893668

RESUMO

Bacterial flagellar subunits are exported across the cell membrane by the flagellar Type III Secretion System (fT3SS), powered by the proton motive force (pmf) and a specialized ATPase that enables the flagellar export gate to utilize the pmf electric potential (ΔΨ). Export gate activation is mediated by the ATPase stalk, FliJ, but how this process is regulated to prevent wasteful dissipation of pmf in the absence of subunit cargo is not known. Here, we show that FliJ activation of the export gate is regulated by flagellar export chaperones. FliJ binds unladen chaperones and, by using novel chaperone variants specifically defective for FliJ binding, we show that disruption of this interaction attenuates motility and cognate subunit export. We demonstrate in vitro that chaperones and the FlhA export gate component compete for binding to FliJ, and show in vivo that unladen chaperones, which would be present in the cell when subunit levels are low, sequester FliJ to prevent activation of the export gate and attenuate subunit export. Our data indicate a mechanism whereby chaperones couple availability of subunit cargo to pmf-driven export by the fT3SS.


Assuntos
Adenosina Trifosfatases/metabolismo , Proteínas de Bactérias/metabolismo , Flagelos/metabolismo , Transporte Proteico/fisiologia , Salmonella typhimurium/metabolismo , Sistemas de Secreção Tipo III/metabolismo , Proteínas de Bactérias/genética , Membrana Celular/metabolismo , Ativação Enzimática , Proteínas de Membrana/metabolismo , Chaperonas Moleculares/metabolismo , Força Próton-Motriz
5.
Microb Cell Fact ; 18(1): 10, 2019 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-30657054

RESUMO

BACKGROUND: Many valuable biopharmaceutical and biotechnological proteins have been produced in Escherichia coli, however these proteins are almost exclusively localised in the cytoplasm or periplasm. This presents challenges for purification, i.e. the removal of contaminating cellular constituents. One solution is secretion directly into the surrounding media, which we achieved via the 'hijack' of the flagellar type III secretion system (FT3SS). Ordinarily flagellar subunits are exported through the centre of the growing flagellum, before assembly at the tip. However, we exploit the fact that in the absence of certain flagellar components (e.g. cap proteins), monomeric flagellar proteins are secreted into the supernatant. RESULTS: We report the creation and iterative improvement of an E. coli strain, by means of a modified FT3SS and a modular plasmid system, for secretion of exemplar proteins. We show that removal of the flagellin and HAP proteins (FliC and FlgKL) resulted in an optimal prototype. We next developed a high-throughput enzymatic secretion assay based on cutinase. This indicated that removal of the flagellar motor proteins, motAB (to reduce metabolic burden) and protein degradation machinery, clpX (to boost FT3SS levels intracellularly), result in high capacity secretion. We also show that a secretion construct comprising the 5'UTR and first 47 amino acidsof FliC from E. coli (but no 3'UTR) achieved the highest levels of secretion. Upon combination, we show a 24-fold improvement in secretion of a heterologous (cutinase) enzyme over the original strain. This improved strain could export a range of pharmaceutically relevant heterologous proteins [hGH, TrxA, ScFv (CH2)], achieving secreted yields of up to 0.29 mg L-1, in low cell density culture. CONCLUSIONS: We have engineered an E. coli which secretes a range of recombinant proteins, through the FT3SS, to the extracellular media. With further developments, including cell culture process strategies, we envision further improvement to the secreted titre of recombinant protein, with the potential application for protein production for biotechnological purposes.


Assuntos
Escherichia coli/metabolismo , Engenharia Metabólica , Sistemas de Secreção Tipo III/metabolismo , Regiões 5' não Traduzidas , Hidrolases de Éster Carboxílico/genética , Hidrolases de Éster Carboxílico/metabolismo , Escherichia coli/crescimento & desenvolvimento , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Flagelos/metabolismo , Flagelina/genética , Hormônio do Crescimento Humano/genética , Hormônio do Crescimento Humano/metabolismo , Humanos , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/genética , Tiorredoxinas/genética , Tiorredoxinas/metabolismo
6.
Methods Mol Biol ; 1593: 17-35, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28389942

RESUMO

During assembly of the bacterial flagellum, structural subunits synthesized inside the cell must be exported across the cytoplasmic membrane before they can crystallize into the nascent flagellar structure. This export process is facilitated by a specialized Flagellar Type III Secretion System (fT3SS) located at the base of each flagellum. Here, we describe three methods-isothermal titration calorimetry, photo-crosslinking using unnatural amino acids, and a subunit capture assay-used to investigate the interactions of flagellar structural subunits with the membrane export machinery component FlhB.


Assuntos
Bactérias/metabolismo , Proteínas de Bactérias/metabolismo , Membrana Celular/metabolismo , Flagelos/metabolismo , Proteínas de Membrana/metabolismo , Transporte Proteico/fisiologia
7.
Phys Biol ; 14(1): 015005, 2017 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-28207419

RESUMO

While the action of many antimicrobial drugs is well understood at the molecular level, a systems-level physiological response to antibiotics remains largely unexplored. This work considers fluctuation dynamics of both the chromosome and cytosol in Escherichia coli, and their response to sublethal treatments of a clinically important antibiotic, rifampicin. We precisely quantify the changes in dynamics of chromosomal loci and cytosolic aggregates (a rheovirus nonstructural protein known as µNS-GFP), measuring short time-scale displacements across several hours of drug exposure. To achieve this we develop an empirical method correcting for photo-bleaching and loci size effects. This procedure allows us to characterize the dynamic response to rifampicin in different growth conditions, including a customised microfluidic device. We find that sub-lethal doses of rifampicin cause a small but consistent increase in motility of both the chromosomal loci and cytosolic aggregates. Chromosomal and cytosolic responses are consistent with each other and between different growth conditions.


Assuntos
Antibacterianos/farmacologia , Infecções por Escherichia coli/tratamento farmacológico , Infecções por Escherichia coli/microbiologia , Escherichia coli/efeitos dos fármacos , Rifampina/farmacologia , Cromossomos Bacterianos/efeitos dos fármacos , Cromossomos Bacterianos/genética , Escherichia coli/citologia , Escherichia coli/genética , Genoma Bacteriano/efeitos dos fármacos , Humanos
8.
Nat Microbiol ; 1: 16244, 2016 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-27819262
10.
PLoS One ; 9(10): e111451, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25350000

RESUMO

E. coli is a model platform for engineering microbes, so genetic circuit design and analysis will be greatly facilitated by simple and effective approaches to introduce genetic constructs into the E. coli chromosome at well-characterised loci. We combined the Red recombinase system of bacteriophage λ and Isothermal Gibson Assembly for rapid integration of novel DNA constructs into the E. coli chromosome. We identified the flagellar region as a promising region for integration and expression of genetic circuits. We characterised integration and expression at four candidate loci, fliD, fliS, fliT, and fliY, of the E. coli flagellar region 3a. The integration efficiency and expression from the four integrations varied considerably. Integration into fliD and fliS significantly decreased motility, while integration into fliT and fliY had only a minor effect on the motility. None of the integrations had negative effects on the growth of the bacteria. Overall, we found that fliT was the most suitable integration site.


Assuntos
Escherichia coli/metabolismo , Flagelos/metabolismo , Redes Reguladoras de Genes , Proteínas de Bactérias/genética , Bacteriófago lambda/metabolismo , Cromossomos Bacterianos , DNA Bacteriano/metabolismo , Farmacorresistência Bacteriana , Proteínas de Escherichia coli/metabolismo , Flagelina/genética , Regulação Bacteriana da Expressão Gênica , Proteínas de Fluorescência Verde/metabolismo , Proteínas de Membrana/genética , Chaperonas Moleculares/genética , Mutação , Fases de Leitura Aberta , Reação em Cadeia da Polimerase , Recombinases/metabolismo , Biologia Sintética
11.
Trends Microbiol ; 22(10): 566-72, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24973293

RESUMO

Flagella, the helical propellers that extend from the bacterial surface, are a paradigm for how complex molecular machines can be built outside the living cell. Their assembly requires ordered export of thousands of structural subunits across the cell membrane and this is achieved by a type III export machinery located at the flagellum base, after which subunits transit through a narrow channel at the core of the flagellum to reach the assembly site at the tip of the nascent structure, up to 20µm from the cell surface. Here we review recent findings that provide new insights into flagellar export and assembly, and a new and unanticipated mechanism for constant rate flagellum growth.


Assuntos
Bactérias/metabolismo , Proteínas de Bactérias/metabolismo , Flagelos/metabolismo , Membrana Celular/metabolismo , Transporte Proteico
12.
Microb Cell ; 1(2): 64-66, 2014 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-24921063

RESUMO

Flagella, the rotary propellers on the surface of bacteria, present a paradigm for how cells build and operate complex molecular 'nanomachines'. Flagella grow at a constant rate to extend several times the length of the cell, and this is achieved by thousands of secreted structural subunits transiting through a central channel in the lengthening flagellum to incorporate into the nascent structure at the distant extending tip. A great mystery has been how flagella can assemble far outside the cell where there is no conventional energy supply to fuel their growth. Recent work published by Evans et al. [Nature (2013) 504: 287-290], has gone some way towards solving this puzzle, presenting a simple and elegant transit mechanism in which growth is powered by the subunits them selves as they link head-to-tail in a chain that is pulled through the length of the growing structure to the tip. This new mechanism answers an old question and may have resonance in other assembly processes.

13.
Nature ; 504(7479): 287-90, 2013 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-24213633

RESUMO

Bacteria swim by means of long flagella extending from the cell surface. These are assembled from thousands of protein subunits translocated across the cell membrane by an export machinery at the base of each flagellum. Unfolded subunits then transit through a narrow channel at the core of the growing flagellum to the tip, where they crystallize into the nascent structure. As the flagellum lengthens outside the cell, the rate of flagellum growth does not change. The mystery is how subunit transit is maintained at a constant rate without a discernible energy source in the channel of the external flagellum. We present evidence for a simple physical mechanism for flagellum growth that harnesses the entropic force of the unfolded subunits themselves. We show that a subunit docked at the export machinery can be captured by a free subunit through head-to-tail linkage of juxtaposed amino (N)- and carboxy (C)-terminal helices. We propose that sequential rounds of linkage would generate a multisubunit chain that pulls successive subunits into and through the channel to the flagellum tip, and by isolating filaments growing on bacterial cells we reveal the predicted chain of head-to-tail linked subunits in the transit channel of flagella. Thermodynamic analysis confirms that links in the subunit chain can withstand the pulling force generated by rounds of subunit crystallization at the flagellum tip, and polymer theory predicts that as the N terminus of each unfolded subunit crystallizes, the entropic force at the subunit C terminus would increase, rapidly overcoming the threshold required to pull the next subunit from the export machinery. This pulling force would adjust automatically over the increasing length of the growing flagellum, maintaining a constant rate of subunit delivery to the tip.


Assuntos
Flagelos/química , Flagelos/metabolismo , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo , Salmonella typhimurium/citologia , Cristalização , Entropia , Proteínas Intrinsicamente Desordenadas/química , Proteínas Intrinsicamente Desordenadas/metabolismo , Dobramento de Proteína , Transporte Proteico
14.
Nat Commun ; 3: 886, 2012 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-22673913

RESUMO

DNA cytosine methylation regulates gene expression in mammals. In bacteria, its role in gene expression and genome architecture is less understood. Here we perform high-throughput sequencing of bisulfite-treated genomic DNA from Escherichia coli K12 to describe, for the first time, the extent of cytosine methylation of bacterial DNA at single-base resolution. Whereas most target sites (C(m)CWGG) are fully methylated in stationary phase cells, many sites with an extended CC(m)CWGG motif are only partially methylated in exponentially growing cells. We speculate that these partially methylated sites may be selected, as these are slightly correlated with the risk of spontaneous, non-synonymous conversion of methylated cytosines to thymines. Microarray analysis in a cytosine methylation-deficient mutant of E. coli shows increased expression of the stress response sigma factor RpoS and many of its targets in stationary phase. Thus, DNA cytosine methylation is a regulator of stationary phase gene expression in E. coli.


Assuntos
Citosina/metabolismo , Escherichia coli/genética , Metilação de DNA/fisiologia , Regulação Bacteriana da Expressão Gênica/genética , Transcrição Gênica/genética
15.
Nucleic Acids Res ; 40(8): 3524-37, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22180530

RESUMO

IHF and HU are two heterodimeric nucleoid-associated proteins (NAP) that belong to the same protein family but interact differently with the DNA. IHF is a sequence-specific DNA-binding protein that bends the DNA by over 160°. HU is the most conserved NAP, which binds non-specifically to duplex DNA with a particular preference for targeting nicked and bent DNA. Despite their importance, the in vivo interactions of the two proteins to the DNA remain to be described at a high resolution and on a genome-wide scale. Further, the effects of these proteins on gene expression on a global scale remain contentious. Finally, the contrast between the functions of the homo- and heterodimeric forms of proteins deserves the attention of further study. Here we present a genome-scale study of HU- and IHF binding to the Escherichia coli K12 chromosome using ChIP-seq. We also perform microarray analysis of gene expression in single- and double-deletion mutants of each protein to identify their regulons. The sequence-specific binding profile of IHF encompasses ∼30% of all operons, though the expression of <10% of these is affected by its deletion suggesting combinatorial control or a molecular backup. The binding profile for HU is reflective of relatively non-specific binding to the chromosome, however, with a preference for A/T-rich DNA. The HU regulon comprises highly conserved genes including those that are essential and possibly supercoiling sensitive. Finally, by performing ChIP-seq experiments, where possible, of each subunit of IHF and HU in the absence of the other subunit, we define genome-wide maps of DNA binding of the proteins in their hetero- and homodimeric forms.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Escherichia coli K12/genética , Proteínas de Escherichia coli/metabolismo , Regulação Bacteriana da Expressão Gênica , Fatores Hospedeiros de Integração/metabolismo , Fatores de Transcrição/metabolismo , Cromossomos Bacterianos/metabolismo , DNA Bacteriano/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/fisiologia , Escherichia coli K12/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/fisiologia , Deleção de Genes , Genoma Bacteriano , Fatores Hospedeiros de Integração/genética , Fatores Hospedeiros de Integração/fisiologia , Multimerização Proteica , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Subunidades Proteicas/fisiologia , Fatores de Transcrição/genética , Fatores de Transcrição/fisiologia
16.
Nucleic Acids Res ; 39(6): 2073-91, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21097887

RESUMO

Nucleoid-associated proteins (NAPs) are global regulators of gene expression in Escherichia coli, which affect DNA conformation by bending, wrapping and bridging the DNA. Two of these--H-NS and Fis--bind to specific DNA sequences and structures. Because of their importance to global gene expression, the binding of these NAPs to the DNA was previously investigated on a genome-wide scale using ChIP-chip. However, variation in their binding profiles across the growth phase and the genome-scale nature of their impact on gene expression remain poorly understood. Here, we present a genome-scale investigation of H-NS and Fis binding to the E. coli chromosome using chromatin immunoprecipitation combined with high-throughput sequencing (ChIP-seq). By performing our experiments under multiple time-points during growth in rich media, we show that the binding regions of the two proteins are mutually exclusive under our experimental conditions. H-NS binds to significantly longer tracts of DNA than Fis, consistent with the linear spread of H-NS binding from high- to surrounding lower-affinity sites; the length of binding regions is associated with the degree of transcriptional repression imposed by H-NS. For Fis, a majority of binding events do not lead to differential expression of the proximal gene; however, it has a significant indirect effect on gene expression partly through its effects on the expression of other transcription factors. We propose that direct transcriptional regulation by Fis is associated with the interaction of tandem arrays of Fis molecules to the DNA and possible DNA bending, particularly at operon-upstream regions. Our study serves as a proof-of-principle for the use of ChIP-seq for global DNA-binding proteins in bacteria, which should become significantly more economical and feasible with the development of multiplexing techniques.


Assuntos
Proteínas de Escherichia coli/metabolismo , Escherichia coli/genética , Fator Proteico para Inversão de Estimulação/metabolismo , Proteínas de Fímbrias/metabolismo , Regulação Bacteriana da Expressão Gênica , Sítios de Ligação , Cromossomos Bacterianos/metabolismo , DNA Bacteriano/química , DNA Bacteriano/metabolismo , Escherichia coli/crescimento & desenvolvimento , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Fator Proteico para Inversão de Estimulação/genética , Proteínas de Fímbrias/genética , Deleção de Genes , Transcrição Gênica
17.
Nucleic Acids Res ; 38(18): 5970-81, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20483912

RESUMO

Cyclic-di-GMP is a bacterial second messenger that controls the switch between motile and sessile states. It is synthesized by proteins containing the enzymatic GGDEF domain and degraded by the EAL domain. Many bacterial genomes encode several copies of proteins containing these domains, raising questions on how the activities of parallel c-di-GMP signalling systems are segregated to avoid potentially deleterious cross-talk. Moreover, many 'hybrid' proteins contain both GGDEF and EAL domains; the relationship between the two apparently opposing enzymatic activities has been termed a 'biochemical conundrum'. Here, we present a computational analysis of 11 248 GGDEF- and EAL-containing proteins in 867 prokaryotic genomes to address these two outstanding questions. Over half of these proteins contain a signal for cell-surface localization, and a majority accommodate a signal-sensing partner domain; these indicate widespread prevalence of post-translational regulation that may segregate the activities of proteins that are co-expressed. By examining the conservation of amino acid residues in the GGDEF and EAL catalytic sites, we show that there are predominantly two types of hybrid proteins. In the first, both sites are intact; an additional regulatory partner domain, present in most of these proteins, might determine the balance between the two enzymatic activities. In the second type, only the EAL catalytic site is intact; these--unlike EAL-only proteins--generally contain a signal-sensing partner domain, suggesting distinct modes of regulation for EAL activity under different sequence contexts. Finally, we discuss the role of proteins that have lost GGDEF and EAL catalytic sites as potential c-di-GMP-binding effectors. Our findings will serve as a genomic framework for interpreting ongoing molecular investigations of these proteins.


Assuntos
Bactérias/enzimologia , Proteínas de Bactérias/metabolismo , GMP Cíclico/análogos & derivados , Diester Fosfórico Hidrolases/metabolismo , Fósforo-Oxigênio Liases/metabolismo , Sistemas do Segundo Mensageiro , Proteínas Arqueais/química , Proteínas Arqueais/genética , Proteínas Arqueais/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Biocatálise , Domínio Catalítico , GMP Cíclico/metabolismo , Proteínas de Escherichia coli , Regulação Bacteriana da Expressão Gênica , Genoma Arqueal , Genoma Bacteriano , Genômica , Proteínas de Membrana/química , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Diester Fosfórico Hidrolases/química , Diester Fosfórico Hidrolases/genética , Fósforo-Oxigênio Liases/química , Fósforo-Oxigênio Liases/genética , Processamento de Proteína Pós-Traducional , Estrutura Terciária de Proteína
18.
J Mol Biol ; 391(4): 679-90, 2009 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-19497327

RESUMO

The specialised signal recognition particle family guanosine 5c-triphosphate (GTP)-binding protein FlhF is required for the correct localisation of flagella in several bacterial species. Here, we characterise the regions of Vibrio cholerae FlhF that are required for its function and targeting to the old cell pole, and we present evidence for a mechanism by which FlhF establishes flagellum polar localisation. Substitution of residues in FlhF nucleotide-binding motifs reduced GTP binding and the efficiency of flagellum biogenesis, and caused flagellum mislocalisation. However, replacement of conserved putative catalytic residues (D(321), R(324), and Q(330)) had no effect, suggesting that while GTP binding influences FlhF function, GTPase activity might not be essential. FlhF associated with the inner membrane in the absence of other flagellar proteins, and a functional FlhF-green fluorescent protein fusion was targeted to the old cell pole where the flagellum is localised. FlhF targeting to the pole was intrinsic, as no other flagellar proteins were needed. Neither the FlhF C-terminal GTP-binding region nor the N-terminal 166-residue B-region was required for polar localisation, though they were essential for FlhF function. Deletion of the central 108-residue N-region of FlhF, comprising alpha-helices N1-N4, did however severely reduce the efficiency of FlhF polar targeting, as well as FlhF function. The intrinsic localisation of FlhF to the old cell pole membrane suggested that FlhF might function at an early stage of flagellum assembly; to test this, we assessed the effect of FlhF on the localisation of the earliest flagellar structural component, the membrane-supramembrane ring protein FliF. Recruitment of FliF to the pole required only FlhF and no other flagellar proteins. FliF polar targeting was abolished in the absence of FlhF and by deletion of the FlhF B-domain or GTP-binding region. Our data indicate that FlhF establishes the site of flagellum assembly at the old cell pole membrane by recruiting the earliest flagellar structural component FliF.


Assuntos
Proteínas de Bactérias/metabolismo , Divisão Celular/fisiologia , Membrana Celular/metabolismo , Flagelos/metabolismo , Proteínas Monoméricas de Ligação ao GTP/metabolismo , Partícula de Reconhecimento de Sinal/metabolismo , Vibrio cholerae/metabolismo , Sequência de Aminoácidos , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Movimento Celular/fisiologia , Polaridade Celular , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Proteínas Monoméricas de Ligação ao GTP/química , Proteínas Monoméricas de Ligação ao GTP/genética , Estrutura Terciária de Proteína , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Partícula de Reconhecimento de Sinal/genética , Vibrio cholerae/ultraestrutura
19.
Genome Res ; 19(1): 79-91, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18836036

RESUMO

Organisms must adapt to make optimal use of the metabolic system in response to environmental changes. In the long-term, this involves evolution of the genomic repertoire of enzymes; in the short-term, transcriptional control ensures that appropriate enzymes are expressed in response to transitory extracellular conditions. Unicellular organisms are particularly susceptible to environmental changes; however, genome-scale impact of these modulatory effects has not been explored so far in bacteria. Here, we integrate genome-scale data to investigate the evolutionary trends and transcriptional control of metabolism in Escherichia coli K12. Globally, the regulatory system is organized in a clear hierarchy of general and specific transcription factors (TFs) that control differing ranges of metabolic functions. Further, catabolic, anabolic, and central metabolic pathways are targeted by distinct combinations of these TFs. Locally, enzymes catalyzing sequential reactions in a metabolic pathway are co-regulated by the same TFs. Regulation is more complex at junctions: General TFs control the overall activity of all connecting reactions, whereas specific TFs control individual enzymes. Divergent junctions play a special role in delineating metabolic pathways and decouple the regulation of incoming and outgoing reactions. We find little evidence for differential usage of isozymes, which are generally co-expressed in similar conditions, and thus are likely to reinforce the metabolic system through redundancy. Finally, we show that enzymes controlled by the same TFs have a strong tendency to co-evolve, suggesting a significant constraint to maintain similar regulatory regimes during evolution. Catabolic, anabolic, and central energy pathways evolve differently, emphasizing the role of the environment in shaping the metabolic system. Many of the observations also occur in yeast, and our findings may apply across large evolutionary distances.


Assuntos
Escherichia coli K12/genética , Escherichia coli K12/metabolismo , Metabolismo Energético/genética , Enzimas/genética , Enzimas/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Evolução Molecular , Genoma Bacteriano , Redes e Vias Metabólicas/genética , Modelos Biológicos , Modelos Genéticos , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Transcrição Gênica
20.
J Mol Biol ; 374(4): 877-82, 2007 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-17967465

RESUMO

The bacterial flagellum assembles in a strict order, with structural subunits delivered to the growing flagellum by a type III export pathway. Early rod-and-hook subunits are exported before completion of the hook, at which point a subunit-specificity switch allows export of late filament subunits. This implies that in bacteria with multiple flagella at different stages of assembly, each export pathway can discriminate and sort unchaperoned early and chaperoned late subunits. To establish whether subunit sorting is distinct from subunit transition from the cytosol to the membrane, in particular docking at the membrane-associated FliI ATPase, the pathway was manipulated in vivo. When ATP hydrolysis by the FliI ATPase was disabled and when the pathway was locked into an early export state, both unchaperoned early and chaperoned late subunits stalled and accumulated at the inner membrane. Furthermore, a chaperone that attenuates late subunit export by stalling when docked at the wild-type ATPase also stalled at the ATPase in an early-locked pathway and inhibited export of early subunits in both native and early-locked pathways. These data indicate that the pathways for early and late subunits converge at the FliI ATPase, independent of ATP hydrolysis, before a distinct, separable sorting step. To ascertain the likely signals for sorting, the export of recombinant subunits was assayed. Late filament subunits unable to bind their chaperones were still sorted accurately, but chaperoned late subunits were directed through an early-locked pathway when fused to early subunit N-terminal export signal regions. Furthermore, while an early subunit signal directed export of a heterologous type III export substrate through both native and early-locked pathways, a late subunit signal only directed export via native pathways. These data suggest that subunits are distinguished not by late chaperones but by N-terminal export signals of the subunits themselves.


Assuntos
Proteínas de Bactérias/metabolismo , Flagelos/metabolismo , Chaperonas Moleculares/metabolismo , ATPases Translocadoras de Prótons/metabolismo , Proteínas de Bactérias/genética , Membrana Celular/metabolismo , Mutação , Estrutura Terciária de Proteína , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Transporte Proteico , ATPases Translocadoras de Prótons/genética , Salmonella/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...